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Abstract
We present a detailed comparison of the self-consistent calculations based on the Hartree–Fock
and the spin density functional theory for a split-gate quantum wire in the IQH regime. We
demonstrate that both approaches provide qualitatively (and, in most cases, quantitatively)
similar results for the spin-resolved electron density, spin polarization, spatial spin separation at
the edges and the effective g factor. Both approaches produce the same values of the magnetic
fields corresponding to the successive subband depopulation and qualitatively similar evolution
of the magnetosubbands. Quantitatively, however, the HF and the DFT subbands are different
(even though the corresponding total electron densities are practically the same). In contrast to
the HF approach, the DFT calculations predict much larger spatial spin separation near the wire
edge for the low magnetic fields (when the compressible strips for spinless electrons are not
formed yet). In the opposite limit of the large fields, the Hartree–Fock and the DFT approaches
give very similar values for the spatial spin separation.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

A detailed knowledge of energetics, spin splitting, magneto-
subband and edge state structure in quantum wires is necessary
for the understanding and interpretation of a variety of
magnetotransport phenomena in the integer quantum Hall
(IQH) regime. A powerful tool to study electron–electron
interaction and spin effects in quantum wires is the mean-field
approach such as the Hartree–Fock (HF) and the spin
density functional theory (DFT) [1]. A number of studies
based on these approaches addressing various aspects of
interacting electrons in the IQH regime in quantum wires
have been reported recently [2–17]. However, in some
cases different studies produce different results and findings
reported in some studies are not recovered in others. It is
not clear whether this is due to using different approaches
treating the exchange and correlation effects in different ways
(i.e. HF vs spin DFT), or if this difference is related to
various approximations of different models (such as, for
example, neglecting a global electrostatics, simplified models
for screening, non-self-consistent calculations, fixed filling
factors, etc).

The main aim of this paper is to present a detailed
comparison of the self-consistent calculations based on the
HF method and the spin DFT approximation for a split-gate
quantum wire in the IQH regime. This includes a comparison
of the magnetosubband structure, electron densities, spin
polarization and spatial spin separation as well as calculation
of the effective g factor. We stress that in our calculations we
do not use any simplified assumptions concerning screening,
so the global electrostatics of the system at hand are treated
exactly. Note that comparative studies of different approaches
are common in the treatment of electronic properties of
quantum dots as they provide an important insight into the
validity of applied methods and approximations used [18]. At
the same time, we are not aware of corresponding studies for
the quantum wires in the IQH regime.

2. Basics

We consider an infinitely long split-gate GaAs/AlGaAs
quantum wire in a perpendicular magnetic field B where
electrons are situated at a distance b below the surface. The HF
equation for a single-particle wavefunction of spin σ , �σ

β(r)
is [1]
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[
H0(r) + Vconf(y) + VH (y) + VZ

]
�σ

β(r)

+
∫

VFock(r, r′)�β(r′) dr′ = Eβ�σ
β (r), (1)

where r = (x, y), H0(r) = − h̄2

2m∗ (
∂
∂x − ei By

h̄ )2 + ∂2

∂y2 is the
kinetic energy in the Landau gauge, with m∗ = 0.067me

being the GaAs effective mass; σ = ± 1
2 describes spin-

up and spin-down states, ↑, ↓. In the split-gate geometry
the bare confining potential Vconf(y) due to the gates, donor
layers and the Schottky barrier is well approximated by the
parabolic confinement, Vconf(y) = V0 + m∗

2 (ω0 y)2, where V0

defines the bottom of the potential (we set the Fermi energy
EF = 0) [14]. The Zeeman energy is VZ = gμb Bσ

where μB = eh̄/2me is the Bohr magneton and the bulk g
factor of GaAs is g = −0.44. The Hartree potential due
to the electron density n(y) = ∑

σ nσ (y) is [14] VH (y) =
− e2

4πε0εr

∫
dy ′n(y ′) ln (y−y′)2

(y−y′)2+4b2 . (This term includes mirror
charges that account for the fact that the GaAs surface is at
the same potential everywhere due to the surface states that
pin the chemical potential to the energy in the middle of
the gap [19].) The nonlocal Fock operator is VFock(r, r′) =
− e2

4πεε0|r−r′ |
∑

β f FD
Eβ

�σ
β(r)�σ∗

β (r′), where the summation is

performed over all states β and f FD
Eβ

is the Fermi–Dirac
distribution function.

We assume the Bloch form of the wavefunction:

�σ
n,k(x, y) = eikxϕσ

n,k(y) (2)

where k is the wavevector and ϕσ
n,k(y) describes the nth

transverse subband for the spin σ . Substituting the Bloch
function (2) into the HF equation (1) and integrating over the
longitudinal coordinate x we arrive at the eigenequations for
ϕσ

n,k(y) [9]:
[
− h̄2

2m∗
d2

dy2
+ m∗ω2

c

2

(
y + h̄k

eB

)2

+ Vconf(y) + VH (y)

+ VZ

]
ϕσ

n,k(y) +
∫

V k
Fock(y, y ′)ϕσ

n,k(y ′) dy ′

= Eσ
n,kϕ

σ
n,k(y), (3)

where ωc is the cyclotron frequency and

V k
Fock(y, y ′) = − e2

2πε0εr

∑

n′k′
f FD

Eσ
n,k

ϕσ
n′k′ (y)ϕσ∗

n′k′ (y ′)

×K0
(|k − k ′||y − y ′|) , (4)

with K0 being the modified Bessel function. Discretizing
equation (3) we reduce the system of the integro-differential
equations to the system of linear equations, which we solve
numerically by standard methods in an iterative way until
the self-consistent solution is achieved. Knowledge of the
wavevectors kσ

n for different states {n, σ } allows us to recover
the subband structure [14], i.e. to calculate an average position
yσ

n of the wavefunctions for different modes n, yσ
n =

h̄kσ
n /eB [19].

Within the framework of the spin density functional
theory, the Kohn–Sham equations for the single-particle
wavefunction �σ

β(r) are [1]
[
H0(r) + V σ (y)

]
�σ

β(r) = Eβ�σ
β(r), (5)

V σ (y) = Vconf(y) + VH (y) + VZ + V σ,ζ
xc (y), (6)

where the first three terms in the effective confinement
potential V σ (y) are the same as in the HF equation (1) and the
last term corresponds to the exchange and correlation potential
in the local spin density approximation. It is given by the
functional derivative V σ,ζ

xc = δ
δnσ {nεζ

xc(n)}, where εζ
xc(n) is

the exchange and correlation energy functional and ζ(y) =
n↑−n↓
n↑+n↓ is the local spin polarization. All the results presented
below correspond to the parameterization of εζ

xc(n) given by
Tanatar and Ceperley [20]. Assuming the Bloch form of the
wavefunctions (2), equations (5) are solved self-consistently
using the Green’s function technique as described in detail
in [14] (see also [15, 16]).

Note that we find the self-consistent solutions for the DFT
and the HF approaches using completely unrelated numerical
methods. As a validity check we control that these different
methods give identical results when we set V k

Fock and V σ,ζ
xc in,

respectively, equations (3) and (6) to zero and thus reduce both
approaches to the standard spinless Hartree approximation (the
latter is shown to reproduce well [15, 22] the Chklovskii et al
[21] electrostatic treatment).

3. Results and discussion

Figure 1 shows a spatially resolved difference in the electron

density n↑ − n↓ and the total spin polarization P = n↑
1D−n↓

1D

n↑
1D+n↓

1D

calculated using the HF and the spin DFT approaches for a
representative quantum wire (nσ

1D = ∫
nσ (y) dy). A detailed

analysis of the spin polarization in a split-gate quantum wire
based on the spin DFT approach was given in our previous
work [14, 15]. For the sake of comparison with the HF
approximation we summarize below the main findings. The
spin polarization is maximal for magnetic fields close to
depopulation of the even subbands, see figure 1(d). In this
case the highest occupied (odd) subband forms a compressible
strip in the middle of the wire and, therefore, the electron
density is mostly spin-polarized in the center of the wire,
see figure 2(d). (We define the width of the compressible
strip within the window |E − EF| � 2πkT [14–16, 22],
which corresponds to the energy interval where the subbands
are partially filled, 0 < f FD < 1.) Minima of the spin
polarization correspond, instead, to depopulation of the odd
subbands. At polarization minima the spin-up and spin-down
subbands are fully (and practically equally) occupied as their
bottoms in the center of the wire are situated below (or just
on the border) of the energy window |E − EF| � 2πkT ,
see figure 2(c). Spin polarization is absent in the center of
the wire and increases towards the edges, because the spin-
up and-down subbands intersect EF at different distances from
the wire center. For the case of spinless electrons compressible
strips are formed near the wire boundaries for sufficiently
high magnetic fields [15, 21, 22]. The exchange interaction,
however, completely or partially suppress the compressible
strips, leading to a spatial spin separation between the spin-
up and spin-down states [15]. This spatial separation causes a
strong spin polarization near the boundaries which is clearly
seen in figure 1(b) for magnetic fields B � 2.75 T. This
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Figure 1. (a), (b) Spatially resolved spin polarization of the electron density n↑ − n↓. (c), (d) the number of subbands and the total spin

polarization P = n↑
1D−n↓

1D

n↑
1D+n↓

1D

; arrows indicate the magnetic fields corresponding to the magnetosubband structure shown in figure 2. (e), (f) The

effective g factor. (g), (h) The spatial spin separation at the wire edge dsep (a definition of dsep is indicated at the right of figure 2(a)). The left
and right panels correspond respectively to the HF and the spin DFT approximations. The bare confining potential Vconf(y) is well
approximated by parabolic confinement with V0 = −85 meV, h̄ωc = 2 meV, the distance to the surface b = 60 nm, temperature T = 1 K.
With these parameters the linear electron density in the wire n1D = 5.5 × 108 m−1 and the local (sheet) density in the wire center
n = 1.5 × 1015 m−2.

spin separation grows as the magnetic field increases because
the width of the corresponding compressible strips for the
spinless electrons increases, see figures 1(b) and (h). Note
that the spin DFT approach also predicts an almost constant
(independent of B) spatial spin polarization in the vicinity
of wire boundaries (150 nm � |y| � 200 nm) even for
lower fields B � 2.0 T, when the compressible strips are
not formed yet (cf. figures 1(a) and (b)). This low-field spin
polarization near the wire boundaries is apparently absent in
the HF approach.

Let us now compare the results of the spin DFT
calculations with those based on the HF approach. It is
remarkable that both approaches give practically the same
values for the magnetic fields corresponding to the successive
subband depopulation, cf. figures 1(c) and (d). Moreover,
both approaches give practically the same total electron density
distribution n(y), see figures 2(a) and (b). However, the spin-

resolved densities are not always the same. In contrast to the
spin DFT approach, the HF calculation does not always exhibit
a spatial spin polarization near the edges for the low fields
(when the compressible strips for spinless electrons are not
yet formed). This is the case for a quantum wire of figure 1
for B � 2.75 T. The spin separation near the wire edges
dsep is caused by the exchange interaction and it is known to
depend on the steepness of the confinement potential [3, 23]:
as the external confining potential becomes smoother, the
spin separation grows. Figure 3 shows that, while the
spatial spin separation dDFT

sep and dHF
sep exhibit qualitatively the

same behavior as a function of the potential steepness, the
DFT approach predicts much larger spatial spin separation
as compared to the HF method. Besides, the critical value
of the potential steepness at which different spins become
spatially separated is obviously lower in the HF approach.
We stress that the difference between dDFT

sep and dHF
sep discussed
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Figure 2. (a), (b) The local filling factors ν↑, ν↓ and ν = ν↑ + ν↓ (ν = nh/eB) calculated within the HF and the spin DFT approaches for two
representative magnetic fields (indicated by arrows in figures 1(c) and (d)). (c), (d) The magnetosubband structure for spin-up and spin-down
electrons calculated within the HF and the spin DFT approaches. The thick solid lines indicate the DFT effective confinement potential V σ ,
equation (6) (note that, because of the nonlocal character of the HF equations, it is not possible to define the effective confinement potential in
the HF approach). dsep defines a distance between up and down densities taken at a half-maximum of the density in the wire center.

Figure 3. The spatial spin separation near the wire edge as a function
of the confinement steepness calculated within the spin DFT and HF
approaches in the regime of low fields (B = 0.5 T). The inset
illustrates how the confinement steepness changes as the bottom of
the parabolic confinement potential, V0, varies (h̄ω0 is adjusted to
keep the wire width constant, w = 500 nm.)

above corresponds to the regime of the low fields, when
the compressible strips for spinless electrons are not formed
yet. For larger fields (corresponding to the formation of
compressible strips for the spinless electrons), the Hartree–
Fock and the DFT approaches give very similar values for the
spin separation, cf. figures 1(g) and (h). In this case dsep is
approximately equal to the width of the compressible strips
for spinless electrons (see [15] for a detailed discussion of
the suppression of the compressible strips by the exchange

interaction leading to the spatial spin polarization at the edges).
Note that our study cannot distinguish which approach gives a
correct result for dsep for the low field. This question can be
resolved by a comparison with the exact results obtained by,
for example, quantum Monte Carlo methods. We speculate at
this point that it is the DFT approach that overestimates the
spatial spin separation at lower fields. This conclusion is based
on transport measurements on lateral quantum dots, indicating
that the spin-polarized injection and detection by means of the
spatial separation of spins can be achieved only in the edge
state regime for sufficiently high magnetic field [24].

Let us turn our attention to the subband structure. Figure 2
shows the subband structure for two representative magnetic
fields corresponding to the minimum and maximum of the
spin polarization in a quantum wire. Qualitatively, the HF
and the DFT subbands exhibit very similar features and
evolve in a similar way as the magnetic field is changed.
This includes the subband depopulation, the formation of the
compressible strip in the middle of the wire and the subband
separation at the edges. Quantitatively, however, the HF and
the DFT subbands are different (even though the corresponding
densities are practically the same, see figures 2(b) and (d)). The
most pronounced difference is that the consecutive subband
separation for different spins in the DFT approach is equal to
h̄ωc, whereas the HF subband separation exceeds this value.
We attribute this difference to the nonlocal character of the
exchange interaction in the HF approximation. Note that the
HF subband separation tends to h̄ωc as the density increases
because the exchange interaction becomes less pronounced for
higher densities in comparison to the kinetic energy.

4



J. Phys.: Condens. Matter 20 (2008) 335233 S Ihnatsenka and I V Zozoulenko

Figure 4. The effective g factor as a function of V0 (the potential
bottom) calculated within the spin DFT and HF approaches. The
magnetic field is B = 4T and h̄ω0 = 8 meV. N indicates the number
of occupied subbands.

Because the DFT and HF approaches give rather similar
evolution of the magnetosubband structure, the corresponding
behavior of the total spin polarization P and the effective g
factor, geff, is also similar, see figures 1(c)–(f). (We define the
effective g factor according to geff = 〈(E↑

n,k − E↓
n,k)/gμB B〉

where the averaging is performed over all the k vectors and
the occupied subbands n.) The DFT approach gives a slightly
higher value of P at the lower fields because of the enhanced
spin polarization near the edges as discussed above. Both
approaches give quantitatively similar dependences of geff as
a function of magnetic field. Because geff is directly related to
the subband spin splitting, the dependence of geff = geff(B)

closely follows that of P = P(B), showing a well-known
oscillatory character with a periodicity of 1/B related to the
subband depopulation [25]. A maximum value of geff ≈ 15 is
reached close to magnetic fields corresponding to depopulation
of the even subbands, i.e. when the subband splitting in the
wire center is maximal. A similar behavior of the g factor is
also manifest in its dependence on V0, see figure 4. Increasing
V0 corresponds to the raising of the bottom of the potential
which leads to the depopulation the subbands. This, in turn,
leads to the oscillatory dependence of geff which shows a
maximum each time the even subband depopulates. Note that
this behavior of geff = geff(V0) as well as the absolute value of
the geff are consistent with the experimental results of Pallecchi
et al [26] who extracted the g factor of the quantum wire from
the magnetocapacitance measurements.

4. Conclusion

We demonstrate that the spin DFT and HF approaches provide
qualitatively (and, in most cases, quantitatively) the same

description of a split-gate quantum wire in the IQH regime.
This includes the electron density, spin polarization and
the effective g factor. The two approaches give the same
magnetic field values for successive subband depopulations
and qualitatively similar evolution of the magnetosubbands.
Quantitatively, however, the HF and the DFT subbands
are different (even though the corresponding total electron
densities are practically the same). In contrast to the HF
approach, the DFT calculations predict much larger spatial
spin separation near the wire edge for the low fields (when the
compressible strips for spinless electrons are not formed yet).
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